Characterisation of intestinal peptide transporter of the Antarctic haemoglobinless teleost Chionodraco hamatus.
نویسندگان
چکیده
H(+)/peptide cotransport was studied in brush-border membrane vesicles (BBMV) from the intestine of the haemoglobinless Antarctic teleost Chionodraco hamatus by monitoring peptide-dependent intravesicular acidification with the pH-sensitive dye Acridine Orange. Diethylpyrocarbonate-inhibited intravesicular acidification was specifically achieved in the presence of extravesicular glycyl-L-proline (Gly-L-Pro) as well as of glycyl-L-alanine (Gly-L-Ala) and D-phenylalanyl-L-alanine (D-Phe-L-Ala). H(+)/Gly-L-Pro cotransport displayed saturable kinetics, involving a single carrier system with an apparent substrate affinity (K(m,app)) of 0.806+/-0.161 mmol l(-1). Using degenerated primers from eel and human (PepT1) transporter sequence, a reverse transcription-polymerase chain reaction (RT-PCR) signal was detected in C. hamatus intestine. RT-PCR paralleled kinetic analysis, confirming the hypothesis of the existence of a PepT1-type transport system in the brush-border membranes of icefish intestine. Functional expression of H(+)/peptide cotransport was successfully performed in Xenopus laevis oocytes after injection of poly(A)(+) RNA (mRNA) isolated from icefish intestinal mucosa. Injection of mRNA stimulated D-Phe-L-Ala uptake in a dose-dependent manner and an excess of glycyl-L-glutamine inhibited this transport. H(+)/peptide cotransport in the Antarctic teleost BBMV exhibited a marked difference in temperature optimum with respect to the temperate teleost Anguilla anguilla, the maximal activity rate occurring at approximately 0 degrees C for the former and 25 degrees C for the latter. Temperature dependence of icefish and eel intestinal mRNA-stimulated uptake in the heterologous system (oocytes) was comparable.
منابع مشابه
Carbonic anhydrase activity in tissues of the icefish Chionodraco hamatus and of the red-blooded teleosts Trematomus bernacchii and Anguilla anguilla.
Carbonic anhydrase (CA) activity was measured in blood, intestine, kidney and gill of two Antarctic teleosts, the haemoglobinless Chionodraco hamatus and the red-blooded Trematomus bernacchii, and of the temperate teleost Anguilla anguilla. In all species, the highest CA activity was in the gills, with the greatest activity in C. hamatus. CA activity in the blood was highest in A. anguilla, but...
متن کاملEvolution of the complement system C3 gene in Antarctic teleosts.
Notothenioidei are typical Antarctic teleosts evolved to adapt to the very low temperatures of the Antarctic seas. Aim of the present paper is to investigate sequence and structure of C3, the third component of the complement system of the notothenioid Trematomus bernacchii and Chionodraco hamatus. We determined the complete nucleotide sequence of two C3 isoforms of T. bernacchii and a single C...
متن کاملH+/peptide cotransport was studied in brush-border membrane vesicles (BBMV) from the intestine of the haemoglobinless Antarctic teleost Chionodraco hamatus by monitoring peptide-dependent intravesicular acidification
provided by dietary protein digestion is mediated by electrogenic brush-border membrane (BBM) transport processes. Peptide influx, coupled to an inwardly directed H+ gradient, is additionally driven by the inside-negative transmembrane electrical potential (Ganapathy et al., 1994). Peptide transporters are unique among the solute transporters in presenting H+ as the cotransported species and th...
متن کاملProtein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter.
Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the...
متن کاملA New APEH Cluster with Antioxidant Functions in the Antarctic Hemoglobinless Icefish Chionodraco hamatus
Acylpeptide hydrolase (APEH) is a ubiquitous cytosolic protease that plays an important role in the detoxification of oxidised proteins. In this work, to further explore the physiological role of this enzyme, two apeh cDNAs were isolated from the Chionodraco hamatus icefish, which lives in the highly oxygenated Antarctic marine environment. The encoded proteins (APEH-1(Ch) and APEH-2(Ch)) were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 4 شماره
صفحات -
تاریخ انتشار 2003